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Abstract: We are moving towards a radical transformation of our energy systems. The success
of the new paradigm created by the Smart Grid vision will require not only the creation and
integration of new technologies into the grid, but also the redesign of the market structures
coupled with it. In order to design the market structures for the grid of the future, economic
models able to capture the new physical reality are the first requirement. In this paper,
we present a general economic equilibrium model that refines standard economic models by
including dynamics, uncertainty in supply and demand, and transmission constraints. The
main finding is that the dynamical characteristics of the efficient equilibria can be highly
undesirable for consumers, suppliers, or both. Moreover, we show that transmission constraints
can exacerbate these characteristics.
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1. INTRODUCTION

Power systems have always been a rich source of problems
for control theorists. One of the most famous examples
is the control of “singular perturbed dynamical systems”,
which was motivated in part by problems in power systems
in the 1970s. Today there is an urgent need for models
and control techniques to address a massively complex and
hitherto unseen dynamical system consisting of new energy
sources, information technologies and multiple market
mechanisms (Massoud Amin and Wollenberg, 2005). We
view control and system theory as one of the disciplines
that will lead the research along this direction and provide
valuable insights to comprehend and control this complex
network, justifying the term “Smart Grid” (Santacana
et al., 2010).

The focus of this paper is the market side of the Smart
Grid. Our goal is to understand the impact of dynamics,
constraints, and uncertainty, that will become more acute
with the increased deployment of renewable resources.
Such sentiment is aptly conveyed by Smith et. al. in the
recent article (Smith et al., 2010), where the authors write
that, “little consideration was given to market design and
operation under conditions of high penetrations of remote,
variable renewable generation, such as wind ... and solar
energy, which had not yet appeared on the scene in any
significant amounts.” Our approach is to characterize the
competitive equilibria for a power network model that
captures these complexities. This may be regarded as a
stepping stone towards designing markets for the Smart
Grid.

In the spirit of the cold war Milton Friedman wrote,
“Fundamentally, there are only two ways of coordinating
the economic activities of millions. One is central direc-

tion involving the use of coercion – the technique of the
army and of the modern totalitarian state. The other is
voluntary cooperation of individuals – the technique of
the marketplace” (Friedman, 1962). We hope that most
economists today would see this as an extreme point of
view, but we find that polarization inhibits discussion on
market design even today. Of course there are more than
two ways! What is missing is a firm science for making
design choices in a dynamic market, taking into account
the special features of that particular market.

What are the special features of an electricity market?
The electricity market is a coupling of two constrained
and highly complex dynamical systems; one physical and
one economic. The physical system is a complex network
consisting of power flowing through transmission lines,
modulated by distributed generation units, Kirchhoff’s
laws, and operational and security constraints. Loads and
generation are each subject to uncertainty. The economic
system typically consists of coupled markets such as day-
ahead and real-time auctions. These auctions are dynamic
— prices vary by two orders of magnitude in many real-
time markets today — and are subject to uncertainty
because of the “rational agents” driving the economic side.
The presence of such complicating factors in these coupled
systems, along with the sometimes orthogonal nature of
the physical objectives with respect to the economic goals
of the market players, make electricity market design a
challenging task.

Control Theorist’s Perspective? In a typical control
design, an engineer starts with a simple model of the
physical system, then chooses a control approach (e.g.,
PID, H∞, LQG, MPC, adaptive, or MDP), and creates a
feedback control solution. The design is usually verified via



simulation and/or experiments. Even then, the design may
need to be refined due to unexpected results in practice. If
all efforts fail, then the engineer might consider a redesign
of the physical system. A common feature in the design
of electricity markets across several jurisdictions in the
world has been an almost null consideration of any of
these design steps. Typical market designs are guided
by idealized models of the behavior of players and the
underlying physical reality. However, it is clear now that
the underlying physical reality of electricity generation can
impact deeply the outcome of a given market structure.

In this paper, we present a general economic equilibrium
model that refines standard economic models (Aliprantis
et al., 2002) by including dynamics, uncertainty in supply
and demand, and operational constraints associated with
generation and transmission. The approach follows our
earlier work (Cho and Meyn, 2010; Meyn et al., 2010) in
which dynamic competitive equilibria are constructed un-
der the most ideal assumptions in which “market power”
is ruled out. This previous work is focused on a two-player
market, without transmission constraints, and subject to
special statistical assumptions. Using a Lagrangian de-
composition that is standard in static economic analysis
and certain dynamic economic analyses (Mas-Colell et al.,
1995; Chow, 1997), we extend our prior work to address
the economic impact of transmission constraints and other
special features of the power grid, while maintaining the
qualitative conclusions of our prior work. We find that
the unique efficient equilibrium – the absolute optimum
in an economic sense – may in fact be volatile and highly
undesirable from the point of view of consumers, suppliers,
or both. It may not be surprising that consumers will
sometimes suffer from volatile prices. Less obvious is that
suppliers may suffer from volatility. Consequently, they
may not wish to stay in the market, which will difficult
the achievement of resource adequacy – a component of
reliability. To create a more reliable system we then must
recognize that the classical notion of efficiency is just one
metric. In the case of electricity markets, reliability is also
critical for the economic security of the region.

While this paper does not provide a direct solution to
the market design problem, it provides a framework for
constructing dynamic models for electricity markets, and
methods for characterizing the resulting competitive equi-
libria. The dynamic model is constructed using techniques
well known in the control community and effectively cap-
tures the underlying physics of the power system while
taking into considering the economic aspects of electricity
trading.

A key finding is that standard economic conclusions hold
only on average. We find that the dynamic behavior of
prices can be highly volatile, especially when subject to
transmission constraints. Our results highlight the need
for moving beyond the widely adopted static economic
models which typically provide insights only in terms of
average quantities. An investigation beyond these average
quantities is critical to design appropriate markets that
can help to achieve economic and reliable power systems
for sustainable development. We hope that the ideas and
results presented in this work, complemented with recent
research on economic theory of networks (Goyal, 2007),
stochastic networks (Chen et al., 2006; Meyn, 2007), pa-

rameterized supply functions (Johari and Tsitsiklis, 2008),
market dynamics (Kizilkale and Mannor, 2010; Roozbe-
hani et al., 2010; Chen et al., 2010), load management
schemes (Caramanis and Foster, 2009), and integration of
renewables (Meyn et al., 2010) can facilitate the design
and implementation of futures electricity markets.

The remainder of this paper contains four additional sec-
tions and is organized as follows. In Sec. 2 we present the
economic and physical models of the electricity market.
We devote Sec. 3 to characterize the competitive equilib-
rium in dynamic markets using a control-theorist-oriented
theoretical scaffolding. The main results are the conditions
for the existence of the competitive equilibrium in terms
of duality concepts from nonlinear optimization theory.
Characterization of the competitive equilibrium for sev-
eral cases are presented in Sec. 4. We provide concluding
remarks and final thoughts in Sec. 5.

2. ELECTRICITY MARKET MODEL

Restructuring has provided increased opportunities for
competition in the electricity industry. In the market envi-
ronment, the market participants make decisions based on
their own interests. These self-interested entities compete
in the markets for the rights to serve the load or be
served. The electricity prices and the quantities sold are
determined by competition in this market and the market
rules.

Although the main reason for adopting energy markets has
been to reduce electricity bills, reliability of service contin-
ues to remain an overriding concern of the system oper-
ators. As mentioned in the introduction, the reliability-
driven operations – which are impacted by the physical
constraints on the generation and the transmission – may
conflict with the economic objectives of the market partic-
ipants. Such conflicts are only intensified in a large power
system consisting of multiple generators subject to mini-
mum up/down-time constraints, ramping constraints and
capacity constraints, connected to consumers via a com-
plex, capacity-constrained transmission network. Since the
aforementioned operational constraints on generation and
transmission impact market decisions, we consider them
explicitly in our analysis.

In what follows, we present a market model for energy in
the perfect-competition setting of equilibrium economics.
A critical assumption of this theory is that all players
are ‘price takers’. That is, no player can influence prices
unilaterally. In every sense, this model is an appropriate
representation of a perfect ‘free-market’ as analyzed in
typical economics text. Not surprisingly, we find that mar-
ket outcomes reflect the standard economic conclusions
for efficient markets in which prices equal marginal costs,
but only on average. Because of dynamic constraints, the
sample path property of prices in the equilibrium will show
perverse volatility patterns that have negative impact on
consumers, suppliers or both.

2.1 The players and the rules

For simplicity we restrict discussion to a market consisting
of a single “consumer” and a single “supplier” that rep-
resent price taking consumers and suppliers distributed



across the grid. The model captures a power system con-
sisting of N buses, indexed by 1, 2, ..., N . For time t ≥ 0,
at each bus n ∈ {1, 2, ..., N}, there is an associated price
Pn(t) for energy traded at that bus. The price-taking
assumption means that the price process Pn(t) at a par-
ticular bus cannot be influenced by the actions of the
consumers or suppliers.

Consumer We denote by Dn(t) the demand at time t
at bus n, and by EDn(t) the energy withdrawn by the
consumer at that bus. We assume that there is no free
disposal for energy, which requires that EDn(t) ≤ Dn(t)
for all t. If sufficient generation is available at bus n at
time t, then EDn(t) = Dn(t). In the event of insufficient
generation, we have EDn(t) < Dn(t), i.e., the consumer
experiences a blackout.

The consumer obtains value on consuming energy and
disutility for not meeting demand during a blackout. These
are represented by possibly nonlinear functions,

Utility of consumption: vn(EDn(t)) , (1a)

Disutility of blackout: cbo
n (Dn(t)− EDn(t)) (1b)

The consumer must pay for energy at price Pn(t). We
use D(t), ED(t), and P (t) to denote the associated N -
dimensional column vectors, and we use bold face font
to denote the entire sample path. For instance, P :=
{P (t) : t ≥ 0}.
The welfare of the consumer at time t is the signed sum
of his benefits and costs:
WD(t) :=

∑
n

[
vn(EDn(t)) − cbo

n (Dn(t)− EDn(t))

− Pn(t)EDn(t)
] (2)

Observe that prices are determined by location. In the
language of today’s markets they are locational prices.

Supplier We denote by ESn(t) andRSn(t) the energy and
reserve produced by the supplier at bus n. The operational
and physical constraints on the production of energy and
reserve are expressed abstractly as

(ES,RS) ∈ XS (3)
These constraints include ramping constraints on gener-
ation imposed by the physics of both generators and the
grid. However, at this level of generality the specific details
of the constraints are unimportant.

The production cost at time t for energy injected at bus
n is denoted cEn(ESn(t)), and for the reserve provided at
that bus is cRn(RSn(t)). The supplier receives the revenue
PnESn(t) for producing energy. The welfare of the supplier
at time t is the difference between his revenue and the
costs,

WS(t) :=
∑
n

[
PnESn(t)− cEn(ESn(t))− cRn(RSn(t))

]
(4)

Network To capture the impact of network constraints
and exploit network structure we introduce a third player
– the network. This is motivated in part by current
practice: The transmission grid is operated by a third
entity (neither the consumers nor the suppliers) in every
electricity market operating in the world today.

We will find it convenient to introduce a “network welfare
function” to define a competitive equilibrium for the power
grid market model. The welfare of the network at time t
represents the ‘toll charges’ for the transmission of energy.
At time t, this is defined by,

WT(t) :=
∑
n

[
Pn(EDn(t)− ESn(t))

]
(5)

The first constraint faced by the network is based on the
assumption that it is lossless, so it neither generates nor
consumes energy. Consequently, the network is subject to
the supply-demand balance constraint,

1TES(t) = 1TED(t) , t ≥ 0 (6)

It is assumed that the buses are the nodes in a network
and the links represent the transmission lines. There are L
transmission lines, indexed by {1, 2, ..., L}. The network is
assumed to be connected. We adopt a lossless DC model
to represent the network. Suppose bus 1 is selected as the
reference bus, based on which the injection shift factor
matrix H ∈ [−1, 1]N×L is defined, where Hnl denote the
power distributed on line l when 1 MW is injected into
bus n and withdrawn at the reference bus (Wood and
Wollenberg, 1996; Chen et al., 2006).

Let fmax
l denote the capacity of transmission line l. On

letting Hl ∈ RN denote the l-th column of H, the capacity
constraint for line l is expressed,

−fmax
l ≤ (ES − ED)THl ≤ fmax

l (7)

2.2 Information and Uncertainty

In addition to the physical constraints captured by XS,
in every market there are informational constraints. In
this paper, we adopt the highly idealized assumption that
both sides of the market share a common information
set. To model this, and also the impact of uncertainty
and volatility, we opt for a stochastic model. Hence the
processes described in the previous pages are all stochastic,
and assumed to be adapted to a filtration {Ht : t ≥ 0}.
The consumer and supplier’s objective function is the
long-run discounted expected profit with discount rate γ,
represented by

KD := E
[∫

e−γtWD(t) dt
]
,

and KS := E
[∫

e−γtWS(t) dt
]

The supplier and consumer each aim to optimize their
respective mean discounted mean welfare KS, KD. A
similar expression can be obtained for KT, the long-run
discounted welfare of the network. These quantities will in
general depend on the initial condition of the system. We
suppress this dependency whenever possible.

To emphasize the similarity between static and dynamic
equilibrium theory we adopt the following Hilbert-space
notation: For two stochastic processes F and G, each
adapted to Ht, we denote

〈F ,G〉 := E
[∫

e−γtF (t)G(t) dt
]
. (8)

In particular, using this notation we have,
KS = 〈WS,1〉 and KD = 〈WD,1〉 (9)



where 1 denotes the process that is identically unity.

Examples We first explain how this model is related to
the single bus / single consumer model of (Cho and Meyn,
2010). In this model the decision variables were taken to
be generation capacity G and reserve, where G coincides
with E + R in the notation of this paper. However, the
generation was assumed normalized (the deviation from
the day ahead market), so that negative values for G(t)
were possible. The set X◦S in (Cho and Meyn, 2010) would
be defined by ramp constraints on G: For all t1 > t0 ≥ 0,

ζ− ≤ ES(t1)− ES(t0)
t1 − t0

+
RS(t1)−RS(t0)

t1 − t0
≤ ζ+ . (10)

In fact, in the model of (Cho and Meyn, 2010) the lower
bound was relaxed, so that ζ− =∞.

In this prior work the utility of consumption was assumed
to be of the form vmin(G,D) for a constant v > 0. The
disutility of blackout was taken to be piecewise linear: zero
for R > 0, and proportional to D − G otherwise. The
analogous functions for the model introduced here are the
linear and piecewise linear functions,

Value of consumption = vE

Cost of blackout = cbo max(D − E, 0) ,
(11)

where v and cbo are constants.

Line 1 Line 2

Line 3

ES1

ED1

ED2 ED3

RS1

ES3ES2 RS3RS2

Fig. 1. Three-node power transmission network.

Fig. 1 shows a three-bus model considered in several
other market analysis papers (Chen et al., 2006). If the
impedances are identical in the three transmission lines,
and bus 1 is chosen as the reference bus, then the injection
shift factor matrix is given by

H = 1
3

 0 0 0
−2 1 −1
−1 −1 −2

 (12)

We return to this example in Sec. 4.2.

3. EQUILIBRIUM AND EFFICIENCY IN DYNAMIC
MARKETS

The competitive equilibrium of economics is used as a
vehicle to study the outcomes of a market under a set
of idealized assumptions (Aliprantis et al., 2002). It is a
widely accepted benchmark for evaluating real markets
outcomes. If the behavior of a market nearly matches the
behavior predicted by the competitive equilibrium, then
the market is deemed to be functioning well. The existence
and optimality of a competitive equilibrium have been
studied extensively using static models, under standard
assumptions, typically including continuity and convexity
of cost and utility function.

In the electricity industry, physical and operational limits
of the facilities and network impose stringent constraints
on the behavior of the market participants. This can
present challenges when applying the usual market analy-
sis tools to evaluate the market. A complete understanding
of the impact of these physical characteristics on market
outcomes remains an open question. We believe that a
better science for dynamic, networked markets is a key
requirement for the electricity market designs of the future.

The usual definition of a competitive equilibrium with two
players is based on the respective optimization problems
of the supplier and consumer,

(ES,RS)∈ arg max
ES,RS

〈WS,1〉, (13)

ED ∈ arg max
ED

〈WD,1〉 , (14)

where the welfare functions are given in (4,2). We adopt
the same conventions in our dynamic analysis. However,
in the equilibrium definition that follows we introduce
the third player – the network – to account for network
constraints (and also rule out ‘arbitrage’ – an issue to
be illustrated with examples in a lengthier version of this
paper under preparation).
Definition 1. A competitive equilibrium is a quadruple of
process vectors: consumed energy, supplied energy, sup-
plied reserve, and energy price, denoted as {ED,ES,RS,P },
which satisfies the following conditions:

(i) (ES,RS) solves (13),
subject to the operational/physical constraint (3).

(ii) ED solves (14).
(iii) The pair (ED,ES) optimizes the welfare function of

the network,
(ED,ES) ∈ arg max

ED,ES

〈WT,1〉, (15)

subject to the supply-demand balance constraint (6),
and the network constraint (7).

The supplier, consumer and network are also subject to
the measurability constraints outlined in Sec. 2.2 in their
respective optimization problems. 2

Note that the set of feasible strategies for the supplier
is subject to the operational/physical constraints (3), but
the consumer’s optimization problem is not subject these
constraints.

To evaluate the welfare performance of the market, we
introduce into our analysis a social planner who aims
to maximize the economic well-being of everyone in the
system. The social planner uses the total welfare, denoted
by Wtot(t), to measure the economic well-being of the
system with

Wtot(t) :=WS(t) +WD(t) +WT(t) (16)
Note thatWtot(t) is the sum of {vn(EDn(t))− cbo

n (Dn(t)−
EDn(t))− cEn(ESn(t))− cRn(RSn(t))} over all nodes n.
Definition 2. The social planner’s problem (SPP) is

max
ED,ES,RS

〈Wtot,1〉, (17)

subject to the operational/physical constraint (3), the
network constraint (7), and energy-balance constraint (6).
Its solution is called an efficient allocation. 2



We assume throughout the paper that the SPP (17) has a
solution, denoted (E∗D,E

∗
S,R

∗
S).

Let {ED,ES,RS,P } be a competitive equilibrium. If
{ED,ES,RS} is an efficient allocation, then we say that
the equilibrium is efficient. If every competitive equilib-
rium is efficient, then we say that the first welfare theorem
holds. On the other hand, let {ED,ES,RS} be an efficient
allocation. If we can construct a price process P such that
{ED,ES,RS,P } becomes a competitive equilibrium, we
say the allocation is supported by the price P . If every
efficient allocation can be supported, then we say that the
second welfare theorem holds.

We now analyze the competitive equilibrium of the market
in the context of the welfare theorems. We start the
analysis by constructing the Lagrangian of the SPP.
Definition 3. The Lagrangian of the SPP is

L =− 〈Wtot,1〉+ 〈λ, (1 ·ED − 1 ·ES)〉
+
∑
l

〈µ+
l , (ES −ED) ·Hl − fmax

l 〉

+
∑
l

〈µ−l ,−(ES −ED) ·Hl − fmax
l 〉

where µ+
l (t) ≥ 0 and µ−l (t) ≥ 0 for all t and l. 2

A key step is to define the candidate price process P as

Pn(t):=λ(t)+
∑
l

(µ−l (t)−µ+
l (t))Hln, t ≥ 0, n ≥ 1. (18)

From the definitions, we conclude that the Lagrangian can
be expressed,

L =−
∑
n

{〈vn(EDn)− cbo
n (Dn −EDn),1〉 − 〈P n,EDn〉}

−
∑
n

{〈P n,ESn〉 − 〈cEn(ESn) + cRn(RSn), 1〉} (19)

−
∑
l

〈µ+
l + µ−l , f

max
l 〉

Therefore, L is a constant minus the sum of supplier and
consumer welfare functions, with WD and WD defined
using this price P .
Definition 4. The dual functional for the SPP is

h(λ,µ+,µ−) = min
ED,ES,RS

L (20)

The following weak duality bound follows since the mini-
mization in (20) amounts to a relaxation of the SPP (17):
Lemma 5. (Weak Duality). For any allocation {ED,ES,RS}
and Lagrangian multiplier (λ,µ+,µ−) with µ+,µ− ≥ 0,
we have

−〈Wtot,1〉 ≥ h(λ,µ+,µ−) (21)

An equality in (21) implies that strong duality holds. The
main result of this section characterizes the existence of a
competitive equilibrium in terms of strong duality:
Theorem 6. (Existence of Competitive Equilibrium). The
market admits a competitive equilibrium if and only if the
SPP satisfies strong duality.

Proof. We first prove the sufficient condition: strong
duality implies existence of competitive equilibrium. Since
strong duality holds, we have

−〈Wtot,1〉 = h(λ,µ+,µ−) (22)

Suppose that the allocation {ED,ES,RS} is feasible for
the SPP. We then construct a competitive equilibrium with
price as given in (18).

The feasibility of the triple {ED,ES,RS} for SPP implies
1TES(t) = 1TED(t) for all t, and hence

L = −〈Wtot,1〉+
∑
l

〈µ+
l , (ES −ED) ·Hl − fmax

l 〉

+
∑
l

〈µ−l ,−(ES −ED)THl − fmax
l 〉

Feasibility also implies −fmax
l ≤ (ES(t) − ED(t))THl ≤

fmax
l , and given the non-negativity of µ+,µ−, we have

〈µ+, (ES −ED)THl − fmax
l 〉 ≤ 0 ,

and 〈µ−,−(ES −ED)THl − fmax
l 〉 ≤ 0

This together with (22) gives L ≤ h(λ,µ+,µ−) But, by
the definition in (20), we have L ≥ h(λ,µ+,µ−), so that
we obtain the identity,

h(λ,µ+,µ−) = L (23)
This identity implies that ED maximizes the consumer’s
welfare, {ES,RS} maximizes the supplier’s welfare, and

〈µ+, (ES −ED)THl − fmax
l 〉 = 0 ,

and 〈µ−,−(ES −ED)THl − fmax
l 〉 = 0

Using the prices {P n = λ +
∑
l(µ
−
l − µ

+
l )Hln} defined

in (18), we substitute the above two equations into the
network welfare expression to obtain,〈∑

n

[P n(EDn −ESn)] ,1
〉

=
〈∑

n

[∑
l

(µ−l − µ
+
l )Hln(EDn −ESn)

]
,1
〉

=
〈∑

l

(µ+
l + µ−l ) · fmax

l ,1
〉
.

This is independent of {ES,RS}, which implies that the
welfare of the network is maximized under the prices
{P n}. Thus, we conclude that P as defined in (18) is the
equilibrium price as claimed.

Next, we prove the necessary condition: existence of com-
petitive equilibrium implies strong duality. Suppose that
{ED,ES,RS,P } is a competitive equilibrium. Then we
know that {ED,ES} maximizes the network welfare when
the price is P . The Lagrangian associated with the max-
imization of network welfare is expressed as follows: For
any µ+,µ− ≥ 0,

LT =−
∑
n

〈P n, (EDn −ESn)〉+ 〈λ, (1TED − 1TES)〉

+
∑
l

〈µ+
l , (ES −ED)THl − fmax

l 〉 (24)

+
∑
l

〈µ−l ,−(ES −ED)THl − fmax
l 〉

The maximization of network welfare is a linear program,
and hence the optimum satisfies the KKT conditions. As

a consequence, associated with the constraints
∂LT

∂EDn
=

∂LT

∂ESn
= 0, there exist {λ,µ+,µ−} such that (18) holds:

P n = λ+
∑
l

(µ−l − µ
+
l )Hln



Moreover, by complementary-slackness, we have
〈µ+, (ES −ED)THl − fmax

l 〉 = 0
〈µ−,−(ES −ED)THl − fmax

l 〉 = 0
(25)

Next, we investigate h(λ,µ+,µ−) for the SPP, using the
multipliers from the maximization of network welfare.
Since {ED,ES,RS,P } is a competitive equilibrium, ED

maximizes the consumer’s welfare, and {ES,RS} maxi-
mizes the supplier’s welfare. Based on the form (18) for P
we conclude that

{ED,ES,RS} ∈ arg min
ED,ES,RS

L

Substituting {ED,ES,RS} into the definition of L, and
applying the complementary slackness equation (25),

−〈Wtot,1〉 = h(λ,µ+,µ−)
That is, strong duality holds. 2

We stress that the theorem characterizes prices in any
competitive equilibrium:
Corollary 7. The only candidates for prices in a compet-
itive equilibrium are given by (18), based on the optimal
Lagrangian multipliers.

Proof. This is because only the optimal multipliers could
possibly lead to strong duality. 2

Theorem 6 tells us that computation of prices and quan-
tities can be decoupled: The quantities {ED,ES,RS} are
obtained through the solution of the SPP, and the price
process P e is obtained as a solution to its dual. The
following corollary underlines this point. If P e supports
one competitive equilibrium, then it supports any other
competitive equilibrium.
Corollary 8. If {E1

D,E
1
S,R

1
S,P

1} and {E2
D,E

2
S, R

2
S,P

2}
are two competitive equilibria, then {E2

D,E
2
S,R

2
S, P

1} is
also a competitive equilibrium.

Proof. Due to the necessary condition of Theorem 6 there
exists Lagrange multipliers (λ1,µ

+
1 ,µ

−
1 ) and (λ2,µ

+
2 , µ

−
2 )

corresponding to the two equilibria, such that
h(λ1,µ

+
1 ,µ

−
1 ) = −〈Wtot1,1〉 =

h(λ2,µ
+
2 ,µ

−
2 ) = −〈Wtot2,1〉

By the sufficient condition of Theorem 6 any of these price
and quantity pair satisfying strong duality will constitute
a competitive equilibrium. 2

The first and second fundamental theorems of welfare
economics are each implied by Theorem 6.
Theorem 9. (First Fundamental Theorem). Any competi-
tive equilibrium, if it exists, is efficient.

Proof. By the proof of necessary condition, for any com-
petitive equilibrium {ED,ES,RS,P }, there exists some
(λ,µ+,µ−), such that

h(λ,µ+,µ−) = −〈Wtot,1〉
By weak duality (21), {ED,ES,RS} is an efficient alloca-
tion. 2

The second welfare follows similarly:
Theorem 10. (Second Fundamental Theorem). If the mar-
ket admits a competitive equilibrium, then for any efficient
allocation {ED,ES,RS}, there exists a supporting price

process P such that {ED,ES,RS,P } constitutes a com-
petitive equilibrium. 2

4. EQUILIBRIUM PRICES

In the model of (Cho and Meyn, 2010) we found that the
price process P e in the competitive equilibrium is given
by,

P e(t) = (v + cbo)I{R∗(t) ≥ 0}, (26)
where R∗ is the reserve process in the solution to the SPP.
The quantity v+cbo is known as the choke-up price since it
is the maximum the consumer is willing to pay. The choke-
up price will be extremely large in any realistic power
system, so that these prices show tremendous volatility.
However, in this prior work it was shown that the average
price coincides with marginal cost c for generation, in the
sense that

γE
[∫

e−γtP e(t) dt
]

= c (27)

The expression (27) required that the initial reserves be
sufficiently large. The derivation was by direct calculation,
based on the assumption that the consumer is not subject
to temporal constraints.

In this section we show that the same conclusions can be
derived for the general model using Lagrange multiplier
techniques. The conclusions will be slightly different be-
cause of one deviation from the model of (Cho and Meyn,
2010) : In this prior work the generation G(t):=E(t)+R(t)
was assumed to be constrained by ramp rate, but no other
constraints were imposed. In particular, negative values
were allowed since the generation G(t) was assumed to
be normalized (the deviation from the power allocation
determined in the day-ahead market).

We begin with the single-producer single-consumer model
without transmission constraints.

4.1 Equilibrium prices: single bus and single consumer

We first establish the formula for P e. We assume through-
out that v : R+ → R+ and cbo : R → R+ are continuously
differentiable functions of their arguments.
Proposition 11. Suppose that (E∗,R∗) is a solution to
the SPP that defines a competitive equilibrium with price
process P e. Then,
P e(t) = ∇v (E∗(t)) +∇cbo (D(t)− E∗(t)), t ≥ 0. (28)

Proof. In the single bus model we have WD(t) :=
v(ED(t)) − cbo(D(t) − ED(t)) − P e(t)ED(t). The formula
follows because E∗ = ED in the competitive equilibrium,
and the consumer is myopic (recall that the consumer does
not consider ramp constraints). 2

To obtain a formula for the average price we must con-
sider the optimization problem posed by the supplier. For
simplicity we assume that X◦S is defined as in (Cho and
Meyn, 2010) by the ramp constraints (10), and subject to
the non-negativity constraints ES(t) ≥ 0, RS(t) ≥ 0, for
all t.

We then consider a Lagrangian relaxation, in which the
constraint ES(0) +RS(0) = g0 is captured in the Lagrange
multiplier ν. For this we define the Lagrangian,



L(ES,RS, ν) = E
[∫

e−γtWD(t) dt
]

−ν[ES(0) +RS(0)− g0]
(29)

The following result is a consequence of the local Lagrange
multiplier theorem (Luenberger, 1969).
Lemma 12. Suppose (ES,RS) maximizes L(ES,RS, 0)
over pairs in Xg0S . Then, there exist ν∗ ∈ R such that
(ES,RS) maximizes L1(ES,RS, ν

∗) over the larger set of
functions X◦S. 2

The next result is a construction required in an application
of the Lagrange multiplier result Lemma 12.
Lemma 13. Suppose that (RS,ES) belongs to X◦S. Then
there exists a family of solutions {(RS,E

α
S ) : |α| ≤ 1} ⊂

X◦S satisfying EαS (0) = max(ES(0)+α, 0), |EαS (t)−ES(t)| ≤
α for all α, and for t > 0,

lim
α→0

1
α

(EαS (t)− ES(t)) = 1+
S (t) := I{ES(t) > 0} .

Combining the two Lemmas we easily obtain the following
extension of (27):
Theorem 14. Suppose that (E∗,R∗) is a solution to the
SPP that defines a competitive equilibrium with price pro-
cess P e. Suppose that E∗(0) > 0, and suppose moreover
the following bounds hold: The processes E∗ is square
integrable, meaning that 〈E∗,E∗〉 < ∞, and the cost
function cS satisfies cS(e) + |∇cS(e)| ≤ c0(1 + e2) for some
c0 > 0 and all e ≥ 0.

Then the average price coincides with average marginal
cost of energy plus the scaled sensitivity term ν∗:

γE
[∫ ∞

0

e−γt1+
S (t)P e(t) dt

]
= γE

[∫ ∞
0

e−γt1+
S (t)∇cS (E∗(t)) dt

]
+ γν∗

(30)

Proof. The Lagrangian L(Eα,R∗, ν) is differentiable as
a function of α under the assumptions of the theorem, and
we have the expression,

d

dα
L(Eα,R∗, ν∗) = E

[∫
e−γt

d

dα
Wα

S (t) dt
]

− d

dα
ν∗[Eα(0) +R∗(0)− g0]

(31)

where Wα
S (t) := P e(t)EαS (t) − cES (EαS (t)) − cER(R∗(t)). In

this calculation the square integrability assumption and
bounds on cS are used to justify taking the derivative under
the expectation and integral in (29).

The conclusion of the theorem then follows from two facts:
First is optimality of the Lagrangian at α = 0, giving
d
dαL(Eα,R∗, ν) = 0 for α = 0. We then apply Lemma 13
which allows an application of the chain rule to obtain,

d

dα
Wα

S (t)
∣∣∣
α=0

= 1+
S (t)

(
P e(t)E∗(t)−∇cS (E∗(t))

)
Evaluating (31) at α = 0 then gives the desired result. 2

The formula (30) is very similar to (27). The main dif-
ference is the modification when energy is zero, and the
introduction of the term γν∗. The latter is not present in
(27) since this result required large initial reserves, which
implies that ν∗ = 0.

Once again we conclude that, although prices may show
high volatility in the competitive equilibrium, under gen-
eral conditions we find that the average price is precisely
the average marginal cost. The price depends on the initial
value g0, and this dependence is captured through the
sensitivity term ν∗.

4.2 Equilibrium prices: markets with network constraints

We now turn to the general electricity market model
subject to network constraints. We assume this market has
a competitive equilibrium denoted {ED,ES,RS,P

e}; our
goal is to identify properties of P e as was accomplished
for the scalar model in Sec. 4.1.

Our analysis is based on Lagrangian relaxations of the
market model. For this reason we extend the domain of
the utility and disutility functions {vn( · ), cbo

n ( · )} to all
of R, and we assume throughout that these functions are
continuously differentiable.

The following fictitious market is key to our analysis.
Definition 15. The /S-market is defined as follows:

(i) The consumer and transmission models are un-
changed. The operational/physical constraints (3) on
(ES,RS) are relaxed.

(ii) The welfare functions of the consumer and the net-
work are unchanged.

(iii) The welfare function of the supplier is identically zero.
This is achieved by overriding the production cost
functions as follows:
cE/S
n (ESn(t)) = P en(t)ESn(t), cR/S

n (RSn(t)) = 0 (32)

Since the welfare functionWS for the supplier is identically
zero in this model, the market essentially reduces to a
model consisting of two players: the consumer and the
network. We find that the equilibrium for the original
market model provides an equilibrium for the two-agent
market:
Lemma 16. {ED,ES,RS,P

e} is a competitive equilib-
rium for the /S-market.

Proof. The triple {ED,ES,RS} satisfies the supply-
demand balance constraint, and the network constraints,
and maximizes the consumer and the network welfare func-
tions under price P e. To prove the Lemma it remains to
show that {ES,RS}maximizes the supplier’s welfare in the
/S-market. This is immediate since the supplier’s welfare
function is independent of the decision of the supplier —
it is always zero by assumption. 2

Lemma 16 is the main motivation for the introduction
of the /S-market. We have seen that the price P e in the
original market model supports a competitive equilibrium
in the /S-market. Hence we can hope to extract properties
of P e in the simpler market model. The following result
shows that the /S-market is indeed very simple. The result
is a consequence of the assumption that there are no
temporal constraints in this model.
Lemma 17. All players, as well as the social planner, are
myopic in the /S-market. 2

Recall that in the single bus model, the derivation of
the supporting price (28) was based on the assumption



that consumers are not subject to temporal constraints.
Lemma 17 justifies the same approach to analysis in the
network model. The optimization problems posed by the
consumer and the network in the /S-market are reduced to
a “snapshot model” in which we can fix a time t to obtain
properties of P e(t), exactly as in the derivation of (28).

With t fixed, the snapshot optimization problem posed
by the social planner problem (SPP) is defined by the
maximum of the total welfare W/S

tot =∑
n

[
vn(EDn)− cbo

n (Dn − EDn)− P enESn

]
(33)

subject to the following constraints:
1TES = 1TED ↔ λ

−fmax
l ≤ (ES − ED)THl ≤ fmax

l ↔ µ−l , µ
+
l ≥ 0

0 ≤ EDn ≤ Dn ↔ η−n , η
+
n ≥ 0

The terms on the right hand side are Lagrange multipliers
corresponding to the given constraints. The Lagrangian of
the SPP for the /S-market is the function of static variables:

Lh = −W/S
tot + λ(1T(ED − ES))

+
∑
l

µ+
l [(ES − ED)THl − fmax

l ]

+
∑
l

µ−l [−(ES − ED)THl − fmax
l ]

+
∑
n

η+
n (EDn −Dn)−

∑
n

η+
nEDn

(34)

where µ−l , µ
+
l , η

−
n , η

+
n ≥ 0.

Proposition 18. Consider the SPP for the /S-market with
welfare function defined in (33). Suppose that µ−l , µ

+
l ,

η−n , η
+
n are the non-negative, optimal solutions to the dual

with Lagrangian (34). Then the equilibrium price has
entries given as follows: For n = 1, . . . , N ,

P en = ∇vn(EDn) +∇cbo
n (Dn − EDn) + Λ, (35)

where P en = P en(t), EDn , Dn, EDn are also the variables
observed at time t, and where

Λ =


0 , 0 < EDn < Dn

−η+
n , EDn = Dn

η−n EDn = 0

Proof. Since {ED,ES,RS,P
e} is a competitive equilib-

rium for the /S-market, {ED,ES} maximizes the social
planner’s problem for the /S-market. By the KKT condi-
tions we obtain,

0 =
∂Lh

∂EDn
= −∇vn(EDn)−∇cbo

n (Dn − EDn)

+ λ+
∑
l

(µ−ln − µ
+
ln) ·Hln + η+

n − η−n

0 =
∂Lh

∂Esn
= P en − λ−

∑
l

(µ−ln − µ
+
ln) ·Hln

On summing these two equations we obtain,
P en = ∇vn(EDn) +∇cbo

n (Dn − EDn)− η+
n + η−n

The proposition then follows from the complementary
slackness conditions. 2

It appears that prices depend upon the actions of the
players in (35). This is not the case: Just as in Prop. 11 we

can write the price as P en(t) = ∇vn(E∗Dn(t))+∇cbo
n (Dn(t)−

E∗Dn(t))+Λ∗(t), where {E∗Dn(t)} (and consequently Λ∗(t))
are obtained as the solution to the SPP.

To apply the proposition we must identify the parameters
{η−n , η+

n }. This is possible since they are precisely sensi-
tivities of the social planner’s problem with respect to the
respective constraints EDn ≥ 0 and EDn ≤ Dn. In general
the equations given in Prop. 18 may not be sufficient
to obtain a closed form expression for the equilibrium
prices. However, in the next set of examples we find that
calculation is possible using the proposition.

Example: Three bus network Consider the network
shown in Fig. 1. We will see that network constraints may
cause prices to rise beyond what can be found in the single-
bus model, and that prices can be negative.

We assume that the impedances are identical in the three
transmission lines, and that bus 1 is the reference bus,
giving the expression (12) for H. Each node has linear
utility of consumption and disutility of blackout (11), with
common parameters v, cbo.

The snapshot social planner’s problem for the /S-market is

min −
[
v(ED2 + ED3 )− cbo(200− ED2 − ED3 )

]
s.t. ES1 = ED2 + ED3

−fmax
12 ≤ 2

3ED2 + 1
3ED3 ≤ fmax

12

−fmax
23 ≤ 1

3ED2 − 1
3ED3 ≤ fmax

23

−fmax
13 ≤ 1

3ED2 + 2
3ED3 ≤ fmax

13

0 ≤ ED2 ≤ 170 , 0 ≤ ED3 ≤ 30

In the two special cases that follow we fix a specific time
t, and suppose that D2 = 170 MW, D3 = 30 MW. We
suppose moreover that the supporting price P e1 at bus 1 is
zero, and that this is true not just for the snapshot values
{EDi , ESi , RSi} and parameters {fmax

ij }, but for all values
in a neighborhood of these nominal values. This is not
unreasonable given the results of Sec. 4.1, provided that
reserves are strictly positive at bus 1.

Under these assumptions we can then compute the prices
at the other two buses.

Negative prices Assume that fmax
23 = 40 MW, while

the other two lines are unconstrained.

Solving the social planner’s problem for the /S-market we
obtain ED2 = 150 MW, ED3 = 30 MW, and we find
that the constraint fmax

23 = 40 MW is reached. Since
0 < ED2 < D2 , we have P e2 = v + cbo.

For a given ε ∈ R we perturb the constraint on ED3 to
obtain 0 ≤ ED3 ≤ 30+ε. On re-solving the SPP we obtain
ED2 = 150 + ε MW, and ED3 = 30 + ε MW. Applying
Prop. 18 we conclude that P e1 is given by the limit,

v + cbo + lim
ε→0

−(180 + 2ε)v + (20− 2ε)cbo + 180v − 20cbo

ε

which is the negative value P e1 = −(v + cbo).

Prices exceeding the choke up price. Assume
that fmax

13 = 50 MW, while the other two lines are
unconstrained.



Solving the social planner’s problem for the /S-market we
obtain ED2 = 150 MW, ED3 = 0 MW, and the constraint
fmax
13 = 50 MW is reached. Prop. 18 gives P e2 = v + cbo

since 0 < ED2 < D2.

For a given ε ∈ R we perturb the constraint on ED3 to
obtain 0+ε ≤ ED3 ≤ 30. On re-solving the SPP we obtain
ED2 = 150− 2ε MW ED3 = ε MW. We conclude that P e2
is again expressed as a limit,

v + cbo + lim
ε→0

−(180− ε)v + (20 + ε)cbo + 180v − 20cbo

ε
That is, P e2 = 2(v + cbo).

5. CONCLUSIONS

The control systems field is a rich source of insights, anal-
ysis, and algorithms to be deployed in electricity market
design. We introduced in this paper a dynamic competitive
equilibria model for power systems based on a theoretical
scaffolding familiar to the decision and control systems
community. We arrive at long-recognized economic con-
clusions, such as the characterization of equilibrium prices
in terms of marginal cost. We strongly diverge from the
economics field since these result hold only on average.
High volatility of prices can have negative impacts on
consumers, suppliers or both. This is most obvious from
the supplier’s point of view: If my average prices will only
meet my average marginal cost, and my income will be so
uncertain, why would I make the enormous investments
required to go into this business?

This brings us to a significant asymmetry between the
notion of equilibrium in economics and in control: The
equilibrium point is frequently taken as an end point in
an economic analysis. It is the ultimate optimal point to
which we all wish to converge. In any course on control,
an equilibrium is only a starting point. After determining
a desirable equilibrium we next consider its stability, a
region of asymptotic stability, and we attempt to estimate
robustness to un-modeled dynamics. We then simulate,
and if our results do not match our predictions we redesign
the control algorithm, or the system we are attempting to
control. Can we utilize some of the insights and ideas from
control in the design of electricity markets? We do believe
the answer is yes. We hope that the ideas described in this
work will motivate the control community and will form
a building block for constructing and analyzing far more
intricate models, taking into account a broader range of
issues which will help to improved market design.
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